# Aplikasi Decision Tree untuk Seleksi Beasiswa di STMIK Methodist Binjai

#### Marwa Halim<sup>1</sup>, Nomi Sinulingga<sup>2</sup>

<sup>1,2</sup>Program Studi Teknik Informatika, STMIK Methodist Binjai, Indonesia

Email: <sup>1</sup> marwa@stmikmethodistbinjai.ac.id, <sup>2</sup> nomi@stmikmethodistbinjai.ac.id

**Abstrak**– STMIK Methodist Binjaimerupakan sebuah lembaga pendidikan formal khusus bagi mahasiswa/i. STMIK Methodist Binjai memiliki 4 (empat) program studi. Metode Decision Tree merupakan alat pendukung dengan struktur seperti pohon yang memodelkan kemungkinan hasil, biaya, sumberdaya, utilitas, dan kemungkinan konsekuensi. Decision Tree atau pohon keputusan karena pilihannya bercabang, membentuk struktur yang terlihat seperti pohon. Adapun tujuan penelitian adalah untuk mengetahui dan memahami penggunaan dan cara kerja dari Metode *Decision Tree* terhadap aplikasi penentuan penerimaan beasiswa' Untuk menghasilkan sebuah aplikasi yang dapat membantu pihak kampus dalam penentuan penerimaan beasiswa supaya tepat sasaran.

Kata Kunci: Informasi; Beasiswa, Data Mining; Metode; Decision tree;

**Abstract**–STMIK Methodist Binjai is a formal educational institution specifically for students. STMIK Methodist Binjaihas 4 (four) study programs, namely Information Systems, Informatics Engineering, Information Management at diploma level 3 and Information Management at diploma level one. The Decision Tree method is a supporting tool with a tree-like structure that models possible outcomes, costs, resources, utilities, and possible consequences. Decision Tree or decision tree because the choices branch off, forming a structure that looks like a tree. The purpose of the research is to find out and understand the use and workings of the Decision Tree Method on the application for determining scholarship acceptance. To produce an application that can assist the campus in determining scholarship acceptance so that it is right on target.

Keywords: Information; Scholarship; Data Mining; Method; Decision Tree

### **1. PENDAHULUAN**

Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Logika merupakan sebuah lembaga pendidikan formal khusus bagi mahasiswa/i. STMIK Methodist Binjaimemiliki 4 (empat) program studi yaitu sistem informasi dan teknik informatika jenjang sarjana, manajemen informatika jenjang diploma tiga dan manajemen informatika jenjang diploma satu. Setiap tahunnya STMIK Methodist Binjaijuga memberikan bantuan atau beasiswa kepada mahasiswa yang berprestasi dan yang kurang mampu secara ekonomi. Namun dalam pemilihan mahasiswa yang berhak untuk menerima beasiswa tersebut masih belum efektif dan belum tepat sasaran karna masih dilakukan secara manual. Berdasarkan pada masalah tersebut maka penulis berinisiatif mengimplementasikan algoritma Decision Tree untuk mendukung suatu proses pengambilan keputusan yang dapat membantu pihak kampus dalam memudahkan proses pemberian beasiswa kepada mahasiswa STMIK Methodist Binjaisehingga hasil yang didapat lebih efisien dan objektif. Untuk itu dalam penelitian ini, penulis mencoba menggunakan metode Decision Tree. Metode Decision Tree merupakan alat pendukung dengan struktur seperti pohon yang memodelkan kemungkinan hasil, biaya, sumberdaya, utilitas, dan kemungkinan konsekuensi. Disebut Decision Tree atau pohon keputusan karena pilihannya bercabang, membentuk struktur yang terlihat seperti pohon.

Kriteria-kriteria yang digunakan dalam penentuan penerima beasiswa antara lain dapat digambarkan dengan berupa nilai (IPK), penghasilan orang tua, semester, jumlah tanggungan orang tua dan usia. Dengan beberapa criteria tersebut maka sistem akan membantu dalam menampilkan hasil proses penilaian hasil dari setiap mahasiswa dari yang tertinggi hingga terendah sehingga memudahkan pihak kampus dalam mengambil keputusan untuk menentukan mahasiswa yang berhak menerima beasiswa. Maka penulis membatasi ruang lingkup penelitian adalah sebagai berikut :

- 1. Sistem ini hanya membahas mahasiswa berhak memperoleh beasiswa bagi mahasiswa STMIK Methodist BinjaiMedan.
- 2. Sistem yang dirancang menggunakan aplikasi RapidMiner.
- 3. Metode yang digunakana dalah Decision Tree menggunakan algoritma ID3.
- 4. Beasiswa untuk semester 1,3,5

Kriteria penilaian dalam menentukan penerima beasiswa seperti Kriteria Nama, NPM, Nilai IPK, Penghasilan orang tua,Kelakuan, Jumlah Tanggungan orang tua dan Beasiswa.

Adapun tujuan penelitian adalah untuk mengetahui dan memahami penggunaan dan cara kerja dari Metode Decision Tree terhadap aplikasi penentuan penerimaan beasiswa juga untuk menghasilkan sebuah aplikasi yang

dapat membantu pihak kampus dalam penentuan penerimaan beasiswa supaya tepat sasaran. Sementara manfaat penelitian yang dapat diperoleh adalah sistem ini dirancang untuk mempermudah dalam penetapan penerimaan beasiswa Dengan menggunakan metode *Decision Tree* penetapan penerima beasiwa akan menghasilkan data yang akurat.

# 2. METODOLOGI PENELITIAN

#### 2.1 Tahapan Penelitian

Agar penelitian ini dapat terlaksana dan berjalan sesuai dengan langkah-langkah dan prosedur penelitian, maka penulis merancang proses tahapan penelitian yaitu :

- a. Analisis dan Perancangan Sistem
- Merancang suatu sistem untuk proses penentuan penerimaan beasiswa.
- b. Penetapan
  - Membuat Penetapan data mining menggunakan Rapid miner
- c. Pengujian
  - Hasil implementasi pada tahap ini akan diuji sesuai dengan parameter yang telah ditentukan.

Objek penelitian yang penulis tetapkan adalah pengolahan data dalam penilaian dari hasil studi mahasiswa per semester serta latar belakang dari mahasiwa tersebut. Hal ini berdasarkan dari hasil observasi yang telah penulis laksanakan serta hasil data yang telah terkumpul dalam menyelesaikan penelitian ini.

Guna mendukung informasi yang diperlukan dalam pembahasan diatas harus mengumpulkan data secara lengkap. Adapun teknik pengumpulan data yang penulis lakukan dalam penelitian ini adalah [1]:

1. Field Research (Penelitian Lapangan)

Yaitu penelitian yang dilaksanakan langsung terjun kelapangan untuk mendapatkan data dimana data tersebut dapat diperoleh dengan cara melakukan wawancara atau diskusi langsung kepada objek penelitian.

2. Library Research (Penelitian Keperpustakaan) Yaitu penelitian yang dilakukan sebagai dasar pembahasan secara teoritis dengan menggunakan data yang diperoleh oleh dari literatul-literatul termasuk bahan perkuliahan yang pernah diperoleh penulis juga dengan membaca buku-buku yang berhubungan objek penelitian.

### 2.2 Data Mining

Data mining adalah ekstraksi pola yang menarik dari kumpulan data dalam jumlah besar. Penggalian data memiliki beberapa nama alternatif, meskipun definisi eksaknya berbeda, seperti *knowledge discovery in database* (KDD), analisis pola, arkeologi data, pemanenan informasi, dan intelegensia bisnis. Alasan utama mengapa data mining diperlukan adalah karena adanya sejumlah besar data yang dapat digunakan untuk menghasilkan informasi dan pengetahuan yang berguna. *KnowledgeDiscovery* dalam sebuah basis data melalui beberapa tahapan untuk mengolah data yang akan digunakan untuk pengetahuan baru. [2]

Pohon keputusan (*decision tree*) adalah sebuah struktur data yang terdiri dari simpul (*node*) dan rusuk (*edge*) simpul pada sebuah pohon dibedakan menjadi tiga, yaitu simpul akar (*root node*), simpul percabangan (*branch node*) dan simpul daun atau *leaf node*. [3] Model pohon keputusan ditunjukan pada Gambar 1 berikut ini



Gambar 1 Model Sebuah Pohon Keputusan

Algoritma ID3 atau Iterative Dichotomiser 3 (ID3) merupakan sebuah metode yang digunakan untuk membuat pohon keputusan. Algoritma pada metode ini menggunakan konsep dari entropi informasi. Secara ringkas, langkah kerja Algoritma ID3 dapat digambarkan sebagai berikut: [4]

1. Penghitungan Information Gain dari setiap atribut dengan menggunakan :

$$Gain(S, A) = Entropy(S) - \sum_{v \in nilal(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
(1)

Dimana :

 $Entropy(S) = -P_{+} \log_2 P_{+} - P_{-} \log_2 P_{-} \qquad .....(2)$ 

- 2. Pemilihan atribut yang memiliki nilai *information gain* terbesar,
- 3. Pembentukan simpul yang berisi atribut tersebut,
- 4. Ulangi proses perhitungan *information gain* akan terus dilaksanakan sampai semua data telah termasuk dalam kelas yang sama. Atribut yang telah dipilih tidak diikutkan lagi dalam perhitungan nilai *information gain*.

## **3. HASIL DAN PEMBAHASAN**

Data-data yang diperoleh selama proses pengumpulan data terdiri dari kriteria penilaian penerima beasiswa dan data-data calon penerima beasiswa. Data-data tersebut diperoleh dari kriteria yang sudah diterapkan sebelumnya pada STMIK Methodist BinjaiMedan. Pada metode yang akan digunakan dalam penentuan penerima beasiswa yang akan diseleksi harus memenuhi kriteria-kriteria yang sudah ditentukan pada STMIK Methodist BinjaiMedan sebelumnya. Adapun kriterianya sebgai berikut :

| Tabel 1. Kriteria |                              |  |  |  |  |  |
|-------------------|------------------------------|--|--|--|--|--|
| No.               | Kriteria                     |  |  |  |  |  |
| 1                 | NPM                          |  |  |  |  |  |
| 2                 | Nama                         |  |  |  |  |  |
| 3                 | Semester                     |  |  |  |  |  |
| 4                 | Nilai IPK                    |  |  |  |  |  |
| 5                 | Jumlah Penghasilan Orang Tua |  |  |  |  |  |
| 6                 | Kelakuan                     |  |  |  |  |  |
| 7                 | Jumlah Tanggungan orang tua  |  |  |  |  |  |
| 8                 | Beasiswa                     |  |  |  |  |  |

Alternatif prediksi mendapat beasiswa di STMIK Methodist Binjaiyang akan dilihat berdasarkan gambar dibawah ini.

| NPM      | Nama                        | Semester | Nilai IPK | Penghasilan orangtua | Kelakuan | Jumlah Tanggungan Orang Tua | Beasiswa |
|----------|-----------------------------|----------|-----------|----------------------|----------|-----------------------------|----------|
| 1902R001 | Riska Yunita Hasibuan       | 1        | 2.65      | <1000.000            | Baik     | 5 orang                     | ya       |
| 1902P003 | Cut <u>Hartina</u>          | 1        | 3.00      | <1000.000            | Baik     | 3 orang                     | уа       |
| 1902R008 | Ade Rachmadsyah             | 1        | 2.32      | >3000.000            | Baik     | 2 orang                     | Tidak    |
| 1802R002 | Putri Tania                 | 3        | 3.00      | >3.000.000           | Baik     | 4 orang                     | Tidak    |
| 1802R012 | Ismaya                      | 3        | 3.00      | >3.000.000           | Baik     | 3 orang                     | Tidak    |
| 1803R004 | Wahidnun Limbong            | 3        | 3.62      | >3.000.000           | Baik     | 6 orang                     | Ya       |
| 1803R006 | Furkan Al Fahrezi           | 3        | 3.45      | >3.000.000           | Baik     | 5 orang                     | Ya       |
| 1702R007 | Nadila Safira               | 5        | 3.00      | >3.000.000           | Baik     | 1 orang                     | Tidak    |
| 1702R011 | Eva Mufida Padila           | 5        | 3.45      | >3.000.000           | Baik     | 5 orang                     | Ya       |
| 1703R005 | Adam Mizwar                 | 5        | 2.50      | >5.000.000           | Baik     | 3 orang                     | Tidak    |
| 1703R019 | Ricardo Manalu              | 5        | 2.25      | >5000.000            | Baik     | 4 orang                     | Tidak    |
| 1701R001 | Ųci                         | 5        | 3.00      | <2000.000            | Baik     | 7 orang                     | Ya       |
| 1701R003 | Andrew Josua Sipakkar       | 5        | 2.50      | >3.000.000           | Baik     | 1 orang                     | Tidak    |
| 1802R031 | Danes <u>Sismai Siahaan</u> | 3        | 3.85      | >3.000.000           | Baik     | 3 orang                     | Ya       |
| 1802P007 | Namira Chairin Balgis       | 3        | 3.60      | >3.000.000           | Baik     | 3 orang                     | ya       |
| 1802R008 | Tresya Margaretta Sitorus   | 3        | 3.67      | >5000.000            | Baik     | 5 orang                     | Tidak    |
| 1803R017 | Shakila Andini              | 3        | 3.55      | >3.000.000           | Baik     | 2 orang                     | Ya       |
| 1803R001 | Sebastian                   | 3        | 2.32      | >3.000.000           | Baik     | 1 orang                     | Tidak    |
| 1802R030 | Rahayu Simanungkalit        | 3        | 3.00      | >5000.000            | Baik     | 2 Orang                     | Tidak    |

Gambar 2. Alternatif pilihan

#### 3.1 Seleksi Data

Data yang ada pada basis data sering kali tidak semuanya dipakai, oleh karena itu hanya data yang sesuai untuk dianalisis yang akan diambil dari basis data. Data yang digunakan yaitu NPM, Nama, Semester, Nilai IPK, Penghasilan Orangtua, Kelakuan, Jumlah Tanggungan Orangtua, dan Beasiswa. Seteah itu penulis menggunakan aplikasi RapidMiner sebagai aplikasi pengujian data mining dengan metode *decision tree* dengan algoritma ID3. Salah satu *Software* Pengolahan Data Mining *Decision Tree* adalah *RapidMiner*. [5] Adapun langkah-langkah

penerapan Algoritma ID3menggunakan aplikasi RapidMiner, diantaranya sebagai berikut :

- 1. Hal pertama yang harus dilakukan adalah menyediakan data yang akan diolah berformat file excel.
- 2. Buka aplikasi *RapidMiner*. Dilanjutkan dengan *import* data yang akan diolah, yaitu dengan mengklik tombol "*Add Data*" yang terdapat dalam panel *repository*.
- 3. Terdapat dua pilihan tempat penyimpanan data yang akan ditambahkan ke dalam *tools*, yaitu "*My Computer dan Database*".
- 4. Lanjutkan mencari lokasi penyimpanan data file. Jika sudah, maka klik tombol "Next".
- 5. Pilih sel yang akan di import, lalu klik tombol "Next".

- 6. Masih dalam proses *import* data, yaitu pada tahap "*Format Your Columns*". Pada tahap ini pilih *change type*, yang kriterianya *polynominal* digunakan untuk atribut yang memiliki lebih dari dua kategori, dan gunakan kriteria *integer* untuk file bernilai bilangan bulat tanpa koma, setelah itu pada atribut keterangan *change role* dan isi *value* sebagai label, selanjutnya klik *next* sampai dengan *finish*.
- 7. Pada tahap ini data akan tersimpan di *local repository* dengan nama data EXCELL BEASISWA.
- 8. Data berhasil di *import* ke dalam *tools*, lalu kembali ke tampilan awal dengan klik tombol "Design".
- 9. Selanjutnya masukkan proses yang akan menguji data melalui operator, kemudian koneksikan dengan ID3.
- 10. Langkah terakhir yaitu setelah mengaplikasikan fungsi dari masing-masing data yang akan diuji, kemudia tekan tombol *Run* yang berbentuk segitiga Biru.

Flowchart atau sering disebut dengan diagram alir merupakan suatu jenis diagram yang merepresentasikan algoritma atau langkah-langkah instruksi yang berurutan dalam sistem. [6] Pada tahap ini penulis akan menggambarkan langkah – langkah *flowchart* program penerapan *RapidMiner* dalam bentuk diagram dan dihubungkan dengan garis atau arah panah.Selain itu dengan menggunakan bagan alur proses dari sebuah program akan lebih jelas, ringkas, dan mengurangi kemungkinan untuk salah penafsiaran. Adapun *flowchart* program penerapan *RapidMiner* dalam bentuk diagram bentuk diagram dan dihubungkan dengan garis atau arah panah sebagai berikut :



Gambar 3. Alur Penerapan RapidMiner

### 3.2. Hasil Pengujian

Berikut adalah rangkaian proses yang di gunakan dalam melakukan pengujian dan implementasi sistem yaitu :

1. Jalankan aplikasi *RapidMiner* studio 9.10.011 jika sudah di jalankan maka akan muncul tampilan seperti gambar 4.10 kemudian klik *import* data untuk mengimport data yang akan kita analisis menggunakan aplikasi *RapidMiner* 9.10.011.



Gambar 4. Tampilan Awal Aplikasi RapidMiner

2. Setelah klik *import* data maka akan muncul tampilan seperti gambar 4.11 kita data mengimport data dari laptop maupun *database*.

| Import Data - Whe | re is your data?                                                   | ×                |
|-------------------|--------------------------------------------------------------------|------------------|
|                   | Where is your data?                                                |                  |
|                   |                                                                    |                  |
|                   | My Computer 📃 Database                                             |                  |
| L.                | Get support for more data sources from the RapidMiner Marketplace! |                  |
|                   |                                                                    |                  |
|                   |                                                                    |                  |
|                   |                                                                    |                  |
|                   |                                                                    |                  |
|                   |                                                                    |                  |
|                   |                                                                    | 🗙 <u>C</u> ancel |

Gambar 5. Tampilan Import Data

3. Lalu pilih dimana data tersebut akan disimpan di dalam RapidMiner studio 9.10.011 dan klik finish.

| where to store the dat                             | ta? |
|----------------------------------------------------|-----|
| Local Repository (Local)                           |     |
| 🕨 🚾 data                                           |     |
| ▼ 🛅 processes                                      |     |
| ingmai ( 9/1/22 11:56 PM = 7 kB)                   |     |
| EXCELL BEASISWA (911/22 0.02 PM = 5 kB)            |     |
| keputusan decision tree ( 9/2/22 12:13 AM – 3 kB)  |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
| ne EXCELL BEASISWA                                 |     |
|                                                    |     |
| ation //Local Repository/processes/EXCELL BEASISWA |     |
|                                                    |     |

Gambar 6. Tampilan Pemilihan file Import

4. Tahapan selanjutnya adalah memproses data melalui *operators* kemudian *double* klik *read excel*, lalu klik *read excel* (Data *Training*), kemudian input *configuration wizard* lalu pilih data yang akan di uji, setelah itu tentukan label lalu *double* klik *set role* dan atur atribut, setelah itu hubungkan dengan Decision Tree ID3. Disini kita akan menguji data menggunakan *apply model* untuk membuat sebuah model, kemudian *double* klik *performance classification* karena algoritma ID3 menggunakan klasifikasi sebagai data latih.



Gambar 7. Model Proses Clasification

| 2             | - 1      | •                   | 0                                            |          | Views. Desi | pn Result    | s Turbo Pr      | rep Auto Mo      | del Deployments |            |      | Finit data, cowrators, etc 🔑 All Studio |  |  |
|---------------|----------|---------------------|----------------------------------------------|----------|-------------|--------------|-----------------|------------------|-----------------|------------|------|-----------------------------------------|--|--|
|               | ExampleS | et (IlLocal Reposit | org/EXCELL BEASS                             | (AWA)    |             |              | ExampleSet      | (M.ocal Reposito | WEXCELL BEASISW | A) X       |      | Repository ×                            |  |  |
| Result Hist   | iey      | <b>1</b> Đ          | campleSet (Read E                            | xcel) 🖂  |             | ExampleSet i | Retrieve EXCELL | BEASISWA         |                 | Tree (ID3) | ×    | 🔾 import Data 🛛 = •                     |  |  |
|               | Open in  | Turbo Prep          | ne) 🙀 Auto Model Filter (19/19 examples) all |          |             |              |                 |                  |                 |            | •    | W Training Resources (account)          |  |  |
| Data          | Row No.  | NPM                 | Nama                                         | Semester | Niai SPK    | Penghasilan_ | Kelakuan        | Jumlah Tan       | Beasiswa        |            |      | Community Samples (corrected)           |  |  |
|               | 1        | 1902R001            | Riska Yunita                                 | 1        | 2.650       | =1000.000    | Baik            | 5 orang          | ya              |            | ^    | Local Repository (Lonar)                |  |  |
| Σ             | 2        | 1902P003            | Cut Hartina                                  | 1        | 3           | <1000.000    | Bait            | 3 orang          | ya              |            |      | > data                                  |  |  |
| Statistics    | 3        | 1902R008            | Ade Rachma                                   | 1        | 2.320       | >3000.000    | Balk            | 2 orang          | Tidak           |            |      | processes                               |  |  |
|               | 4        | 1802R002            | Publi Tania                                  | 3        | 3           | >3.000.000   | Baik            | 4 orang          | Tidak           |            |      | EXCELL BEASISWA (Anno 1997 - 198        |  |  |
|               | 5        | 1802R012            | Ismaya                                       | 3        | 3           | >3.000.000   | Balk            | 3 orang          | Tidak           |            |      | P B DB (Legens)                         |  |  |
| Isualizations | 6        | 1803R004            | Wahidrian Li                                 | 3        | 3.620       | >3.000.000   | Balt            | 6 crang          | Ya              |            |      |                                         |  |  |
|               | 7        | 1803R005            | Furkan Al Fah.                               | 3        | 3.450       | >3.000.000   | Bait            | 5 orang          | Ya              |            |      |                                         |  |  |
|               |          | 1702R007            | Nadila Safra                                 | 5        | 3           | >3.000.000   | Baik            | 1 orang          | Tidak           | - 1        | . 81 |                                         |  |  |
| -             |          | 1702R011            | Eva Multida P_                               | 5        | 2.450       | >3.000.000   | Baik            | 5 orang          | Ya              |            |      |                                         |  |  |
| Annotations   | 10       | 1703R005            | Adam Mizwar                                  | 5        | 2.500       | >5.000.000   | Baik            | 3 orang          | Tidak           |            |      |                                         |  |  |
|               | 11       | 1703R019            | Ricarde Man                                  | 5        | 2.250       | >5000.000    | Balk            | 4 orang          | Tidak           |            |      |                                         |  |  |
|               | 12       | 1701R001            | Uci                                          | 5        | 3           | <2000.000    | Baik            | 7 orang          | Ya              |            |      |                                         |  |  |
|               | 13       | 1701R003            | Andrew Josu                                  | 5        | 2.500       | >3.000.000   | Balt            | 1 erang          | Tidat           |            |      |                                         |  |  |
|               | 14       | 1802R031            | Danes Sism                                   | 3        | 3.850       | >3.000.000   | Bait            | 3 orang          | Ya              |            |      |                                         |  |  |
|               | 15       | 1802P007            | Namira Chair                                 | 3        | 3.600       | >3.000,000   | Bait            | 3 orang          | уа              |            |      |                                         |  |  |
|               | 16       | 1802R008            | Tresya Marga                                 | 3        | 3.670       | +5000.000    | Balt            | 5 orang          | Tidak.          |            |      |                                         |  |  |
|               | 17       | 1803R017            | Shakila Andini                               | 3        | 3.550       | >3.000.000   | Balt            | 2 orang          | Ya              |            | 1.1  |                                         |  |  |

Gambar 8. Tampilan tabel data

6. Tampilan result bagian statistic,

|                | H - 🕨 - 🖩                              |          | Views. Desig | n Results Tu            | atto Prep. Auto Model    | Deployments                                 | Find data, operativo, etc. P Al Diudio *                               |  |  |
|----------------|----------------------------------------|----------|--------------|-------------------------|--------------------------|---------------------------------------------|------------------------------------------------------------------------|--|--|
|                | ExampleSet #/Local Repository/EXCELL 8 | EASISWA) | <            | Exampl                  | leSet (Recository/E)     | CELL BEASISWA)                              | Repository ×                                                           |  |  |
| Result Hist    | ry 🚺 ExampleSet (Rea                   | Excel) × |              | ExampleSet (Retrieve EX | ICELL BEASISWA)          | <ul> <li>Tree (ID3)</li> </ul>              | 🔘 import Data 🛛 🗉 🔹                                                    |  |  |
| -              | Name                                   | Туре     | Masing       | Statistics              | Filter (B /              | 8 aftributes): Search for Adributes         | W Training Resources (connected)                                       |  |  |
| Data           | V NPM                                  | Nominal  |              | Level<br>1902R008 (1)   | 1701R001 (1)             | 1701R001 (1), 1701R003 (1),[17 r            | Samples     Scommunity Samples (constant)     Local Repository (const) |  |  |
| Σ              | ✓ Nama                                 | Nominal  | 0            | Vahidnun Limbong (1)    | Adam Mizerar (1)         | Vision<br>Adam Mizirar (1), Ade Rachmadsyah | Gonnections     data     morenses                                      |  |  |
| Visualizations | ✓ Semester                             | Integer  |              | 1                       | 5<br>5                   | 3.316                                       | EXCELL BEASISWA ( 8 1 22 2 22 2 22 4 22 4 22 4 22 4 22 4               |  |  |
|                | V Nilai IPK                            | Real     |              | uin<br>2.250            | <sup>than</sup><br>3.850 | 3.038                                       |                                                                        |  |  |
|                | Y Penghasilan orangtua                 | Nominal  | 0            | Least<br>>5.000.000 (1) | >3.000.000 (11)          | >3.000.000 (11), >5000.000 (3),[4           |                                                                        |  |  |
|                | Y Kelakuan                             | Nominal  | 0            | Balk (19)               | Baik (19)                | Baik (19)                                   |                                                                        |  |  |
|                | V Jumlah Tanggungan Orang Tua          | Nominal  | 0            | 7 orang (1)             | 3 orang (5)              | 3 orang (5), 5 orang (4),[6 more]           |                                                                        |  |  |
|                |                                        |          |              | Casar                   | Mad                      | Values                                      |                                                                        |  |  |

Gambar 9. Tampilan model example set

7. Results bagian Vizualisation



Gambar 10. Tampilan Model Example Set (//Local Repository/EXCELL BEASISWA) pada Visualization



Gambar 11. Pohon Keputusan Pada Tree ID3

9. Results bagian Tree ID3 bagian Description.

| T  | ree                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| Be | asiswa = Tidak                                                                                                                     |
| T. | Jumlah Tanggungan Orang Tua = 1 orang: >3.000.000 {<1000.000=0, >3000.000=0, >3.000.000=3, >5.000.000=0, >5000.000=0, <2000.000=0} |
| I. | Jumlah Tanggungan Orang Tua = 2 Orang: >5000.000 {<1000.000=0, >3000.000=0, >3.000.000=0, >5.000.000=0, >5000.000=1, <2000.000=0}  |
| Ĩ. | Jumlah Tanggungan Orang Tua = 2 orang: >3000.000 {<1000.000=0, >3000.000=1, >3.000.000=0, >5.000.000=0, >5000.000=0, <2000.000=0}  |
| Ť. | Jumlah Tanggungan Orang Tua = 3 orang                                                                                              |
| Ĭ. | Semester = rangel [-* - 3]: >3.000.000 {<1000.000=0, >3000.000=0, >3.000.000=1, >5.000.000=0, >5000.000=0, <2000.000=0}            |
| T. | Semester = range2 [3 - *]: >5.000.000 {<1000.000=0, >3000.000=0, >3.000.000=0, >5.000.000=1, >5000.000=0, <2000.000=0}             |
| L  | Jumlah Tanggungan Orang Tua = 4 orang                                                                                              |
| 1  | Semester = rangel [-* - 3]: >3.000.000 {<1000.000=0, >3000.000=0, >3.000.000=1, >5.000.000=0, >5000.000=0, <2000.000=0}            |
| Ľ  | Semester = range2 [3 - *]: >5000.000 {<1000.000=0, >3000.000=0, >3.000.000=0, >5.000.000=0, >5000.000=1, <2000.000=0}              |
| T  | Jumlah Tanggungan Orang Tua = 5 orang: >5000.000 {<1000.000=0, >3000.000=0, >3.000.000=0, >5.000.000=0, >5000.000=1, <2000.000=0}  |
| Be | asiswa = Ya                                                                                                                        |
| L  | Nilai IFK = rangel [-# - 3.050]: <2000.000 {<1000.000=0, >3000.000=0, >3.000.000=0, >5.000.000=0, >5000.000=0, <2000.000=1}        |
| T  | Nilai IFK = range2 [3.050 - *]: >3.000.000 {<1000.000=0, >3000.000=0, >3.000.000=5, >5.000.000=0, >5000.000=0, <2000.000=0}        |
| Be | asiswa = ya                                                                                                                        |
| 1  | Nilai IPK = rangel [-# - 3.050]: <1000.000 {<1000.000=2, >3000.000=0, >3.000.000=0, >5.000.000=0, >5000.000=0, <2000.000=0}        |
| Ť. | Nilai IFK = range2 [3.050 - #]: >3.000.000 {<1000.000=0, >3000.000=0, >3.000.000=1, >5.000.000=0, >5000.000=0, <2000.000=0}        |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |

Gambar 12. Rule dariPohon Keputusan ID3

### 4. KESIMPULAN

- 1. Pada penelitian ini dilakukan pemodelan menggunakan ID3 Berdasarkan hasil perhitungan data mining dengan menggunakan teknik klasifikasi dan algoritma ID3 maka dapat ditarik kesimpulan prediksimendapatkanbeasiswadilakukan dengan menerapkan data mining dan menggunakan *software rapidminer*.
- 2. Kriteria-kriteria yang digunakan dalam perbandingan prediksiuntukmendapatkanbeasiswa.
- 3. Proses penerapan data mining diolah dengan membuat data teks menjadi lebih terstruktur melalui *Pre*processing, data yang diambil dari tahun 2019

# 5. UCAPAN TERIMAKASIH

Terima kasih penulis sampaikan kepada :

- 1. Ibu Raudhah, S.E, S.Kom, M.Kom, Selaku Dosen Pembimbing I Penulisan Skripsi.
- 2. IbuAyu Nuriana Sebayang, S.kom, M.kom Selaku Dosen Pembimbing II Penulisan Skripsi.
- 3. Bapak Afifudin, M.Kom Selaku Ketua Program Studi Sistem Informasi.
- 4. Teristimewa Penulis mengucapkan Terima Kasih Kepada Keluarga tercinta terutama Kepada Ayah dan Ibu yang memberikan Dorongan, dan doa sehingga penulis dapat menyelesaikan Skripsi ini.
- 5. Seluruh Dosen dan Staff Administrasi STMIK Methodist BinjaiMedan.
- 6. Penulis juga mengucapkan Terima Kasih kepada seluruh teman-teman dikampus STMIK Methodist BinjaiMedan dan seluruh teman-teman yang lain yang sudah memberikan motivasi dan semangat.

### REFERENCES

- [1] D. Fak and D. Iain-su, "Penelitian kepustakaan," vol. 0, no. 01, pp. 36–39, 2011.
- [2] Y. Nuraeni, "Perancangan Sistem Informasi Penjaminan Mutu Perguruan Tinggi Bidang Sumber Daya Manusia," J. Sist. Inf., vol. 6, no. 1, p. 32, 2012, doi: 10.21609/jsi.v6i1.276.
- [3] J. A. Sidette, E. Eko, and O. D. Nurhayati, "Pendekatan Metode Pohon Keputusan Menggunakan Algoritma ID3 Untuk Sistem Informasi Pengukuran Kinerja PNS," J. Sist. Inf. Bisnis, vol. 4, no. 2, pp. 75–86, 2014, doi: 10.21456/vol4iss2pp75-86.
- [4] S. and D. L. C. P. Defiyanti, "PERBANDINGAN KINERJA ALGORITMA ID3 DAN C4.5 DALAM KLASIFIKASI SPAM-MAIL Sofi," *Gunadarma Univ. Repos.*, vol. 9, no. 2, pp. 62–68, 2013.
- [5] K. S. M. I. P.-A. Sri Wahyunu, "Implementasi Rapid Miner dalam menganalisa Data Mahasiswa Drop Out," vol. 10, pp. 421–437, 2017.
- [6] R. Rosaly and A. Prasetyo, "Pengertian Flowchart Beserta Fungsi dan Simbol-simbol Flowchart yang Paling Umum Digunakan," *Https://Www.Nesabamedia.Com*, vol. 2, p. 2, 2019, [Online]. Available: https://www.nesabamedia.com/pengertian-flowchart/https://www.nesabamedia.com/pengertian-flowchart/